Practices before the class (March 22)

- (T/F) Let A be an $m \times n$ matrix. If the linear system $A \mathbf{x}=\mathbf{b}$ has a unique solution, then $\operatorname{dim}(\operatorname{Nul}(A))=0$.
- (T/F) Eigenvalues must be nonzero scalars.

Practices before the class (March 22)

- (T/F) Let A be an $m \times n$ matrix. If the linear system $A \mathbf{x}=\mathbf{b}$ has a unique solution, then $\operatorname{dim}(\operatorname{Nul}(A))=0$.
True.
$A \mathbf{x}=\mathbf{b}$ has a unique solution implies there are no free variables.
Thus every column is a pivot column. Then rank $A=n$.
By the Rank Theorem: rank $A+\operatorname{dim}(\operatorname{Nul}(A))=$ number of columns of A, we know $\operatorname{dim}(\operatorname{Nul}(A))=0$.
- (T/F) Eigenvalues must be nonzero scalars.

False. Consider $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$.
The characteristic equation is $|A-\lambda I|=\lambda(\lambda-1)=0$. Thus A has an eigenvalue 0 .

5.4 Eigenvectors and Linear Transformations

Eigenvectors of Linear Transformations

Definition. Let V be a vector space. An eigenvector of a linear transformation $T: V \rightarrow V$ is a nonzero vector \mathbf{x} in V such that $T(\mathbf{x})=\lambda \mathbf{x}$ for some scalar λ. A scalar λ is called an eigenvalue of T if there is a nontrivial solution \mathbf{x} of $T(\mathbf{x})=\lambda \mathbf{x}$; such an \mathbf{x} is called an eigenvector corresponding to λ.

The Matrix of a Linear Transformation

Example 0. Coordinate Vector of a Vector Respect to a Basis

Let V be an n-dimensional vector space with a basis \mathcal{B}. Then any \mathbf{x} in V can be viewed as an element in \mathbb{R}^{n}. For example,

- $V=\mathbb{P}_{2}$, which is the vector space of the polynomials of degree at most 2 .

The standard basis $\mathcal{B}=\left\{1, t, t^{2}\right\}$ and $\operatorname{dim}\left\{\mathbb{P}_{2}\right\}=3$.
Consider a vector $\mathbf{x} \in \mathbb{P}_{2}$, say $\mathbf{x}=3+2 t+4 t^{2}$, then the coordinate vector with respect to \mathcal{B} (recall in \S is

$$
[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}
3 \\
2 \\
4
\end{array}\right] \in \mathbb{R}^{3}
$$

Similarly, if $\mathbf{y}=5+3 t$, then $[\mathbf{y}]_{\mathcal{B}}=\left[\begin{array}{l}5 \\ 3 \\ 0\end{array}\right] \in \mathbb{R}^{3}$.

This can be generalized to the case \mathbb{P}_{n}, i.e., any element in \mathbb{P}_{n} can be presented as a vector in \mathbb{R}^{n+1} after we choose a basis for \mathbb{P}_{n}.

- $W=\mathbb{M}_{2 \times 2}$, which is the vector space of all 2×2 matrices.

The standard basis $\mathcal{C}=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$ and $\operatorname{dim} \mathbb{M}_{2 \times 2}=4$.
Consider a vector $\mathbf{x}=\left[\begin{array}{ll}3 & 4 \\ 6 & 7\end{array}\right] \in \mathbb{M}_{2 \times 2}$, then the coordinate vector with respect to \mathcal{C} is

$$
[\mathbf{x}]_{\mathcal{C}}=\left[\begin{array}{l}
3 \\
4 \\
6 \\
7
\end{array}\right] \in \mathbb{R}^{4} \quad M_{2 \times 2} \quad \dot{\vec{x}}=\left[\begin{array}{ll}
3 & 4 \\
6 & 7
\end{array}\right]
$$

Now we consider a linear transformation $T: \mathbb{P}_{2} \rightarrow \mathbb{M}_{2 \times 2}$ defined by

$$
T(\mathbf{p}(t))=\left[\begin{array}{ll}
\mathbf{p}(0) & \mathbf{p}(2) \\
\mathbf{p}(1) & \mathbf{p}^{\prime}(2)
\end{array}\right]
$$

Can we think about such T in terms of some matrix? (See Example 1.)

Recall from Section 1.9 that any linear transformation T from \mathbb{R}^{n} to \mathbb{R}^{m} can be implemented via leftmultiplication by a matrix A, called the standard matrix of T. We generalize this notion to any linear transformation between two finite-dimensional vector spaces.

Let

- V : an n-dimensional vector space
- W : an m-dimensional vector space
- T : any linear transformation from V to W.

To associate a matrix with T, choose (ordered) bases \mathcal{B} and \mathcal{C} for V and W, respectively.
Given any \mathbf{x} in V, the coordinate vector $[\mathbf{x}]_{\mathcal{B}}$ is in \mathbb{R}^{n} and the coordinate vector of its image, $[T(\mathbf{x})]_{\mathcal{C}}$, is in \mathbb{R}^{m}, as shown in Figure 1.

FIGURE 1 A linear transformation from V to W.
We want to find a matrix M such that the action of T on \mathbf{x} may be viewed as left-multiplication by M. See Figure 2.

FIGURE 2

We use the following example to show how to find such a matrix M. The general idea is explained on the next page.

Example 1. Define $T: \mathbb{P}_{2} \rightarrow \mathbb{M}_{2 \times 2}$ by $T(\mathbf{p}(t))=\left[\begin{array}{ll}\mathbf{p}(0) & \mathbf{p}(2) \\ \mathbf{p}(1) & \mathbf{p}^{\prime}(2)\end{array}\right]$.
a. Find the image under T of $\mathbf{p}(t)=5+3 t$.
b. Show that T is a linear transformation.
c. Find the matrix M for T relative to the basis $\left\{1, t, t^{2}\right\}$ for \mathbb{P}_{2} and the standard basis for $\mathbb{M}_{2 \times 2}$.

Ans: (a). Note $p^{\prime}(t)=3$ if $p(t)=5+3 t$.
Thus $T(5+3 t)=\left[\begin{array}{cc}5+3 \cdot 0 & 5+3 \cdot 2 \\ 5+3 \cdot 1 & 3\end{array}\right]=\left[\begin{array}{cc}5 & 11 \\ 8 & 3\end{array}\right]$
(b). By the definition of a linear transformation, we need to show
(1) $T\left(p_{1}+p_{2}\right)=T\left(p_{1}\right)+T\left(p_{2}\right)$
(2) $T(c p)=c T(p)$, where $p_{1}, p_{2} \in \mathbb{P}_{2}$ and $c \in \mathbb{R}$.

For (1) $T\left(p_{1}+p_{2}\right)=\left[\begin{array}{ll}\left(p_{1}+p_{2}\right)(0) & \left(p_{1}+p_{2}\right)(2) \\ \left(p_{1}+p_{2}\right)(1) & \left(p_{1}+p_{2}\right)^{\prime}(2)\end{array}\right]$
$\frac{\text { by the }}{\text { properly of polynomial }} \begin{array}{ll}\text { and derivatives. }\end{array}\left[\begin{array}{ll}p_{1}(0) & p_{1}(2) \\ p_{1}(1) & p_{1}^{\prime}(2)\end{array}\right]+\left[\begin{array}{ll}p_{2}(0) & p_{2}(2) \\ p_{2}(1) & p_{2}^{\prime}(2)\end{array}\right]$

$$
=T\left(p_{1}\right)+T\left(p_{2}\right)
$$

Similarly, you can show (2) is true for the given T.
(c).

Let $\beta=\left\{1, t, t^{2}\right\}$ be a basis for \mathbb{P}_{2} $l=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$ be a basis for $M_{2 \times 2}$.
Then the desired matrix is a 4×3 matrix constructed by computing the images of basis elements in β in terms of the basis l, i.e.

$$
\left[[T(1)]_{e} \quad[T(t)]_{e} \quad T\left[\left(t^{2}\right)\right]_{e}\right]
$$

We compute.

$$
\begin{aligned}
& T(1)=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]=1 \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+1 \cdot\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+1 \cdot\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+0 \cdot\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
& \text { Thus }[T(1)]_{e}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right] \\
& T(t)=\left[\begin{array}{ll}
p(0) & p^{(2)} \\
p(1) & p^{\prime}(2)
\end{array}\right]=\left[\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \text { Thus }[T(t)]_{e}=\left[\begin{array}{l}
0 \\
2 \\
1 \\
0
\end{array}\right] \\
& T\left(t^{2}\right)=\left[\begin{array}{ll}
0 & 2^{2} \\
1^{2} & 2.2
\end{array}\right]=\left[\begin{array}{ll}
0 & 4 \\
1 & 4
\end{array}\right]
\end{aligned}
$$

Thus

$$
\left[T\left(t^{2}\right)\right]_{e}=\left[\begin{array}{l}
0 \\
4 \\
1 \\
4
\end{array}\right]
$$

Therefore, the matrix for T relative to the basis $\left\{1, t, t^{2}\right\}$ for \mathbb{P}_{2} and the standard basis e for $M_{2 \times 2}$ is

$$
\left.\left.\begin{array}{rl}
& {\left[[T(1)]_{e}\right.}
\end{array}[T(t)]_{e}\left[T\left(t^{2}\right)\right]_{e}\right]\right] .\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 4 \\
1 & 1 & 1 \\
0 & 0 & 4
\end{array}\right]_{4 \times 3} \quad l
$$

We summarize the general method of finding the matrix representation M of T below: Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be any basis for V. If $\mathbf{x}=r_{1} \mathbf{b}_{1}+\cdots+r_{n} \mathbf{b}_{n}$, then

$$
[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}
r_{1} \\
\vdots \\
r_{n}
\end{array}\right]
$$

and since T is linear, we have

$$
\begin{equation*}
T(\mathbf{x})=T\left(r_{1} \mathbf{b}_{1}+\cdots+r_{n} \mathbf{b}_{n}\right)=r_{1} T\left(\mathbf{b}_{1}\right)+\cdots+r_{n} T\left(\mathbf{b}_{n}\right) \tag{1}
\end{equation*}
$$

Since the coordinate mapping from V to \mathbb{R}^{n} is linear (Theorem 8 in Section 4.4), equation (1) leads to

$$
\begin{equation*}
[T(\mathbf{x})]_{\mathcal{C}}=r_{1}\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{C}}+\cdots+r_{n}\left[T\left(\mathbf{b}_{n}\right)\right]_{\mathcal{C}} \tag{2}
\end{equation*}
$$

Since \mathcal{C}-coordinate vectors are in \mathbb{R}^{m}, the vector equation (2) can be written as a matrix equation, namely

$$
\begin{equation*}
[T(\mathbf{x})]_{\mathcal{C}}=M[\mathbf{x}]_{\mathcal{B}} \tag{3}
\end{equation*}
$$

where

$$
M=\left[\left[\begin{array}{llll}
\left.T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{C}} & {\left[T\left(\mathbf{b}_{2}\right)\right]_{\mathcal{C}}} & \cdots & \left.\left[T\left(\mathbf{b}_{n}\right)\right]_{\mathcal{C}}\right] \tag{4}
\end{array}\right.\right.
$$

The matrix M is a matrix representation of T, called the matrix for \boldsymbol{T} relative to the bases \mathcal{B} and \mathcal{C}.

FIGURE 2
FIGURE 1 A linear transformation from V to W.
Equation (3) says that the action of T on \mathbf{x} can be viewed as left-multiplication by M.

Most of your homework deal with a specal case that $V=W$ and a fixed basis \mathcal{B} for V.
Example 2. Let $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ be a basis for the vector space V. Let $T: V \rightarrow V$ be a linear transformation with the property that $T\left(\mathbf{b}_{1}\right)=2 \mathbf{b}_{1}-6 \mathbf{b}_{2}, T\left(\mathbf{b}_{2}\right)=3 \mathbf{b}_{1}+5 \mathbf{b}_{2}, T\left(\mathbf{b}_{3}\right)=7 \mathbf{b}_{2}$ Find $[T]_{\mathcal{B}}$, the matrix for T relative to \mathcal{B} (also called the \mathcal{B}-matrix for T).

Ans: Note in this case the above discussion reduces to:

Recall in § 2.9
FIGURE 2
We compute β-coordinate vectors of $T\left(\vec{b}_{3}\right), T\left(\vec{b}_{2}\right), T\left(\vec{b}_{3}\right)$

$$
\begin{aligned}
& {\left[T\left(\vec{b}_{1}\right)\right]_{\beta}=\left[\begin{array}{c}
2 \\
-6 \\
0
\end{array}\right] \quad\left(\text { since } T\left(\vec{b}_{1}\right)=2 \vec{b}_{1}-6 \vec{b}_{2}+0 \vec{b}_{3}\right)} \\
& \text { similarly, }\left[T\left(\vec{b}_{2}\right)\right]_{\beta}=\left[\begin{array}{l}
3 \\
5 \\
0
\end{array}\right], \quad\left[T\left(\vec{b}_{3}\right)\right]_{\beta}=\left[\begin{array}{l}
0 \\
7 \\
0
\end{array}\right] \\
& \text { Thus } \quad M=\left[\begin{array}{ccc}
2 & 3 & 0 \\
-6 & 5 & 7 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Suppose $A=P D P^{-1}$, where D is a diagonal $n \times n$ matrix. If \mathcal{B} is the basis for \mathbb{R}^{n} formed from the columns of P, then D is the \mathcal{B}-matrix for the transformation $\mathbf{x} \mapsto A \mathbf{x}$.

Example 3. Define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(\mathbf{x})=A \mathbf{x}$. Find a basis \mathcal{B} for \mathbb{R}^{2} with the property that $[T]_{\mathcal{B}}$ is diagonal.

$$
A=\left[\begin{array}{rr}
5 & -3 \\
-7 & 1
\end{array}\right]
$$

ANS: Suppose $A=P D P^{-1}$, where D is diagonal.
Then by Thy 8, $[T]_{\beta}$ is is D, where β is the basis for \mathbb{R}^{2} formed from the columns of P. So \rightarrow covered in 55.3 So we can first diagonalize A to find such matrix P. Then the columns of P are the basis desired

Recall the steps in $\$ 5.3$:

- We first find the eigenvalues of A :

$$
\begin{aligned}
& |A-\lambda I|=\left|\begin{array}{cc}
5-\lambda & -3 \\
-7 & 1-\lambda
\end{array}\right|=(\lambda-1)(\lambda-5)-21=\lambda^{2}-6 \lambda-16 \\
& =(\lambda-8)(\lambda+2)=0 \quad \Rightarrow \quad \lambda=-2 \text { and } \lambda=8
\end{aligned}
$$

- For $\lambda=-2$, we solve $(A-\lambda I) \vec{x}=\overrightarrow{0}$ and get $\vec{V}_{1}=\left[\begin{array}{l}3 \\ 7\end{array}\right]$ (eigenvector for -2)
. For $\lambda=8$, we solve $(A-\lambda I) \vec{x}=\overrightarrow{0}$, to get $\vec{V}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ (eigenvector for 8) Thus $P=\left[\begin{array}{rr}3 & -1 \\ 7 & 1\end{array}\right]$ and the basis is $\left\{\left[\begin{array}{l}3 \\ 7\end{array}\right],\left[\begin{array}{r}-1 \\ 1\end{array}\right]\right\}$

Change of Basis; Similarity of Matrix Representations
Consider \mathbb{R}^{n} with standard basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \cdots, \mathbf{e}_{n}\right\}$ and a linear transformation $T: \mathbf{x} \mapsto A \mathbf{x}$ from \mathbb{R}^{n} to \mathbb{R}^{n}.
Suppose $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \cdots, \mathbf{b}_{n}\right\}$ is another basis for \mathbb{R}^{n}, what is the \mathcal{B}-matrix for the transformation $T: \mathbf{x} \mapsto A \mathbf{x}$?

In fact, this is a special case of what we discussed in Figure 2:

If we set the matrix $P=\left[\begin{array}{llll}\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{n}\end{array}\right]$, then the \mathcal{B}-matrix for the transformation $\mathbf{x} \mapsto A \mathbf{x}$ is

$$
C=P^{-1} A P
$$

Remark: The set of all matrices similar to a matrix A coincides with the set of all matrix representations of the transformation $\mathbf{x} \mapsto A \mathbf{x}$.

Example 4. Find the \mathcal{B}-matrix for the transformation $\mathbf{x} \mapsto A \mathbf{x}$, when $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$.

$$
A=\left[\begin{array}{ll}
-1 & 4 \\
-2 & 3
\end{array}\right], \mathbf{b}_{1}=\left[\begin{array}{l}
3 \\
2
\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
$$

ANs: Let $P=\left[\vec{b}_{1}, \vec{b}_{2}\right]$. From the above discussion, we know the \vec{B}-matrix for the tans formation $\vec{x} \mapsto A \vec{x}$ is

$$
C=P^{-1} A P
$$

$$
P^{-1}=\left[\begin{array}{rr}
3 & -1 \\
2 & 1
\end{array}\right]^{-1}\left[\begin{array}{cc}
1 & 1 \\
-2 & 3
\end{array}\right]=\frac{1}{5}\left[\begin{array}{cc}
1 & 1 \\
-2 & 3
\end{array}\right]
$$

Thus

$$
C=P^{-1} A P
$$

$$
\begin{aligned}
& =\frac{1}{5}\left[\begin{array}{cc}
1 & 1 \\
-2 & 3
\end{array}\right]\left[\begin{array}{ll}
-1 & 4 \\
-2 & 3
\end{array}\right]\left[\begin{array}{rr}
3 & -1 \\
2 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right]
\end{aligned}
$$

Then $C=\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right]$ is the β matrix for the transformation $\vec{x} \mapsto A \vec{x}$.

Exercise 5. Assume the mapping $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ defined by

$$
T\left(a_{0}+a_{1} t+a_{2} t^{2}\right)=6 a_{0}+\left(3 a_{0}-5 a_{1}\right) t+\left(3 a_{1}+2 a_{2}\right) t^{2}
$$

is linear. Find the matrix representation of T relative to the basis $\mathcal{B}=\left\{1, t, t^{2}\right\}$.
Solution. We first compute the image of the basis in \mathcal{B} under T :
$T(1)=6+3 t, \quad T(t)=-5 t+3 t^{2}$, and $T\left(t^{2}\right)=2 t^{2}$.
Thus $[T(1)]_{\mathcal{B}}=\left[\begin{array}{l}6 \\ 3 \\ 0\end{array}\right],[T(t)]_{\mathcal{B}}=\left[\begin{array}{c}0 \\ -5 \\ 3\end{array}\right]$ and $\left[T\left(t^{2}\right)\right]_{\mathcal{B}}=\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]$
Therefore, $[T]_{\mathcal{B}}=\left[\begin{array}{ccc}6 & 0 & 0 \\ 3 & -5 & 0 \\ 0 & 3 & 2\end{array}\right]$

