Practices before the class (March 22)

- (T/F) Let A be an m×n matrix. If the linear system Ax = b has a unique solution, then dim(Nul(A)) = 0.
- (T/F) Eigenvalues must be nonzero scalars.

Practices before the class (March 22)

(T/F) Let A be an m× n matrix. If the linear system Ax = b has a unique solution, then dim(Nul(A)) = 0.

True.

 $A\mathbf{x} = \mathbf{b}$ has a unique solution implies there are no free variables.

Thus every column is a pivot column. Then rank A = n.

By the Rank Theorem: rank $A + \dim(Nul(A)) =$ number of columns of A, we know $\dim(Nul(A)) = 0$.

• **(T/F)** Eigenvalues must be nonzero scalars. False. Consider $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. The characteristic equation is $|A - \lambda I| = \lambda(\lambda - 1) = 0$. Thus A has an eigenvalue 0.

5.4 Eigenvectors and Linear Transformations

Eigenvectors of Linear Transformations

Definition. Let V be a vector space. An **eigenvector** of a linear transformation $T: V \to V$ is a nonzero vector \mathbf{x} in V such that $T(\mathbf{x}) = \lambda \mathbf{x}$ for some scalar λ . A scalar λ is called an **eigenvalue** of T if there is a nontrivial solution \mathbf{x} of $T(\mathbf{x}) = \lambda \mathbf{x}$; such an \mathbf{x} is called an **eigenvector** corresponding to λ .

The Matrix of a Linear Transformation

Example 0. Coordinate Vector of a Vector Respect to a Basis

Let V be an n-dimensional vector space with a basis \mathcal{B} . Then any \mathbf{x} in V can be viewed as an element in \mathbb{R}^n . For example,

• $V = \mathbb{P}_2$, which is the vector space of the polynomials of degree at most 2.

The standard basis $\mathcal{B} = \{1, t, t^2\}$ and $\dim\{\mathbb{P}_2\} = 3$.

Consider a vector $\mathbf{x} \in \mathbb{P}_2$, say $\mathbf{x} = 3 + 2t + 4t^2$, then the coordinate vector with respect to \mathcal{B} (recall in § is

This can be generalized to the case \mathbb{P}_n , i.e., any element in \mathbb{P}_n can be presented as a vector in \mathbb{R}^{n+1} after

we choose a basis for $\mathbb{P}_n.$

• $W=\mathbb{M}_{2 imes 2}$, which is the vector space of all 2 imes 2 matrices.

The standard basis $C = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ and $\dim \mathbb{M}_{2 \times 2} = 4$. Consider a vector $\mathbf{x} = \begin{bmatrix} 3 & 4 \\ 6 & 7 \end{bmatrix} \in \mathbb{M}_{2 \times 2}$, then the coordinate vector with respect to C is

Now we consider a linear transformation $T:\mathbb{P}_2 o\mathbb{M}_{2 imes 2}$ defined by

$$T(\mathbf{p}(t)) = egin{bmatrix} \mathbf{p}(0) & \mathbf{p}(2) \ \mathbf{p}(1) & \mathbf{p}'(2) \end{bmatrix}$$

Can we think about such T in terms of some matrix? (See **Example 1**.)

Recall from Section 1.9 that any linear transformation T from \mathbb{R}^n to \mathbb{R}^m can be implemented via leftmultiplication by a matrix A, called the standard matrix of T. We generalize this notion to any linear transformation between two finite-dimensional vector spaces.

Let

- *V* : an *n*-dimensional vector space
- *W*: an *m*-dimensional vector space
- T : any linear transformation from V to W.

To associate a matrix with T, choose (ordered) bases ${\mathcal B}$ and ${\mathcal C}$ for V and W, respectively.

Given any \mathbf{x} in V, the coordinate vector $[\mathbf{x}]_{\mathcal{B}}$ is in \mathbb{R}^n and the coordinate vector of its image, $[T(\mathbf{x})]_{\mathcal{C}}$, is in \mathbb{R}^m , as shown in Figure 1.

FIGURE 1 A linear transformation from V to W.

We want to find a matrix M such that the action of T on \mathbf{x} may be viewed as left-multiplication by M. See Figure 2.

We use the following example to show how to find such a matrix M. The general idea is explained on the next page.

Example 1. Define $T: \mathbb{P}_2 \to \mathbb{M}_{2 \times 2}$ by $T(\mathbf{p}(t)) = egin{bmatrix} \mathbf{p}(0) & \mathbf{p}(2) \\ \mathbf{p}(1) & \mathbf{p}'(2) \end{bmatrix}$.

a. Find the image under T of $\mathbf{p}(t) = 5 + 3t$.

b. Show that T is a linear transformation.

c. Find the matrix M for T relative to the basis $\{1,t,t^2\}$ for \mathbb{P}_2 and the standard basis for $\mathbb{M}_{2 imes 2}$.

Ans: (a). Note
$$p(t) = 3$$
 if $p(t) = 5+3t$.
Thus $T(5+3t) = \begin{bmatrix} 5+3 \cdot 0 & 5+3 \cdot 2 \\ 5+3 \cdot 1 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 11 \\ 8 & 3 \end{bmatrix}$
(b). By the definition of a linear transformation, we need
to show $0 T(p_1 + p_2) = T(p_1) + T(p_2)$
 $0 T(cp) = c T(p)$, where $p_1 \cdot p_2 \in \mathbb{R}_2$ and $c \in \mathbb{R}$.
For $0 T(p_1 + p_2) = \left[(p_1 + p_2)(c) - (p_1 + p_2)(c) \right]$
 $property of polynomial = \begin{bmatrix} p_1(0) & p_1(0) \\ p(1) & p_1'(0) \end{bmatrix} + \begin{bmatrix} p_2(0) & p_2(0) \\ p(1) & p_1'(0) \end{bmatrix}$
 $= T(p_1) + T(p_2)$
Similary, you can show 0 is the for the given T .
(c).
 $r = \mathbb{R}^{n}$, $r = \mathbb{R}^{n}$, $r = \mathbb{R}^{n}$.

Let
$$\mathcal{B} = \{1, t, t^{*}\}$$
 be a basis for \mathcal{B}_{2}
 $\mathcal{L} = \{[\begin{smallmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, [\begin{smallmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, [\begin{smallmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\}$ be a
basis for \mathcal{M}_{2322} .
Then the desired matrix is a 4×3 matrix
constructed by computing the images of basis
elements in \mathcal{B} in terms of the basis \mathcal{C} , i.e.
 $[[[(1)]_{\mathcal{E}} = [T(t_{2})]_{\mathcal{E}}]$
We compute.
 $T(1) = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = 1 \cdot \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + 1 \cdot \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + 1 \cdot \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + 0 \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$
Thus $[[(4)]_{\mathcal{E}} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$

Thus
$$\begin{bmatrix} T(t_{2}) \\ e \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & 2^{2} \\ 1^{2} & 2^{2} \\ 1^{2} & 2^{2} \end{bmatrix} = \begin{bmatrix} 0 & 4 \\ 1 & 4 \end{bmatrix}$$
Thus
$$\begin{bmatrix} T(t_{2}) \\ e \\ 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \\ 1 \\ 4 \end{bmatrix}$$

Therefore, the mortrix for T relative to the basis ?1, t, t? for P. and the standard basis e for M222 is

$$\begin{bmatrix} [[(1)]_{e} & [[(1)]_{e} & [T(t^{2})]_{e} \end{bmatrix} \\ = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 4^{2} \\ 1 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix}_{4\times 3}$$

We summarize the general method of finding the matrix representation M of T below:

Let $\mathcal{B}=\{\mathbf{b}_1,\ldots,\mathbf{b}_n\}$ be any basis for V. If $\mathbf{x}=r_1\mathbf{b}_1+\cdots+r_n\mathbf{b}_{n'}$ then

$$[\mathbf{x}]_{\mathcal{B}} = egin{bmatrix} r_1 \ dots \ r_n \end{bmatrix}$$

and since T is linear, we have

$$T(\mathbf{x}) = T\left(r_1\mathbf{b}_1 + \dots + r_n\mathbf{b}_n\right) = r_1T\left(\mathbf{b}_1\right) + \dots + r_nT\left(\mathbf{b}_n\right)$$
(1)

Since the coordinate mapping from V to \mathbb{R}^n is linear (Theorem 8 in Section 4.4), equation (1) leads to

$$[T(\mathbf{x})]_{\mathcal{C}} = r_1[T(\mathbf{b}_1)]_{\mathcal{C}} + \dots + r_n[T(\mathbf{b}_n)]_{\mathcal{C}}$$
(2)

Since C-coordinate vectors are in \mathbb{R}^m , the vector equation (2) can be written as a matrix equation, namely

$$[T(\mathbf{x})]_{\mathcal{C}} = M[\mathbf{x}]_{\mathcal{B}} \tag{3}$$

where

$$M = [[T (\mathbf{b}_1)]_{\mathcal{C}} \quad [T (\mathbf{b}_2)]_{\mathcal{C}} \quad \cdots \quad [T (\mathbf{b}_n)]_{\mathcal{C}}]$$
(4)

The matrix M is a matrix representation of T, called the **matrix for** T **relative to the bases** \mathcal{B} **and** \mathcal{C} .

FIGURE 1 A linear transformation from V to W.

Equation (3) says that the action of T on \mathbf{x} can be viewed as left-multiplication by M.

Most of your homework deal with a specal case that V=W and a fixed basis ${\cal B}$ for V.

Example 2. Let $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3}$ be a basis for the vector space V. Let $T : V \to V$ be a linear transformation with the property that $T(\mathbf{b}_1) = 2\mathbf{b}_1 - 6\mathbf{b}_2, T(\mathbf{b}_2) = 3\mathbf{b}_1 + 5\mathbf{b}_2, T(\mathbf{b}_3) = 7\mathbf{b}_2$ Find $[T]_{\mathcal{B}}$, the matrix for T relative to \mathcal{B} (also called the \mathcal{B} -matrix for T).

Theorem 8 Diagonal Matrix Representation

Suppose $A = PDP^{-1}$, where D is a diagonal $n \times n$ matrix. If \mathcal{B} is the basis for \mathbb{R}^n formed from the columns of P, then D is the \mathcal{B} -matrix for the transformation $\mathbf{x} \mapsto A\mathbf{x}$.

Example 3. Define $T : \mathbb{R}^2 \to \mathbb{R}^2$ by $T(\mathbf{x}) = A\mathbf{x}$. Find a basis \mathcal{B} for \mathbb{R}^2 with the property that $[T]_{\mathcal{B}}$ is diagonal.

$$A = \begin{bmatrix} 5 & -3 \\ -7 & 1 \end{bmatrix}$$

ANS: Suppose $A = PPP^{-1}$, where D is diagonal.
Then by Thm 8, $[T]_{P}$ is is D , where P is
the basis for R^{2} formed from the columns of P .
So we can first diagonalize A to find such
matrix P . Then the columns of P are the basis
desired.

Recall the steps in \$5.3:
We first find the eigenvalues of A:

$$\begin{vmatrix} A-\lambda I \end{vmatrix} = \begin{vmatrix} 5-\lambda & -3 \\ -7 & 1-\lambda \end{vmatrix} = (\lambda-1)(\lambda-5) - 2I = \lambda^{2} - 6\lambda - 1/6$$

$$= (\lambda - 8)(\lambda + 2) = 0 \implies \lambda = -2 \text{ and } \lambda = 8$$

$$\text{For } \lambda = -2, \text{ we solve } (A-\lambda I)\vec{x} = \vec{0} \text{ and get } \vec{v}_{1} = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \text{ leigenvector for } 2)$$

$$\text{For } \lambda = 8, \text{ we solve } (A-\lambda I)\vec{x} = \vec{0}, \text{ to get } \vec{v}_{2} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} \text{ ceigenvector for } 8)$$
Thus $P = \begin{bmatrix} 3 & -1 \\ 7 & 1 \end{bmatrix}$ and the basis is $\{\begin{bmatrix} 3 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix}\}$

Change of Basis; Similarity of Matrix Representations

Consider \mathbb{R}^n with standard basis $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ and a linear transformation $T : \mathbf{x} \mapsto A\mathbf{x}$ from \mathbb{R}^n to \mathbb{R}^n . Suppose $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n\}$ is another basis for \mathbb{R}^n , what is the \mathcal{B} -matrix for the transformation $T : \mathbf{x} \mapsto A\mathbf{x}$?

In fact, this is a special case of what we discussed in Figure 2:

If we set the matrix $P=[f b_1 \ f b_2 \ \cdots \ f b_n]$, then the ${\cal B}$ -matrix for the transformation $f x\mapsto Af x$ is $C=P^{-1}AP.$

Remark: The set of all matrices similar to a matrix A coincides with the set of all matrix representations of the transformation $\mathbf{x} \mapsto A\mathbf{x}$.

Example 4. Find the \mathcal{B} -matrix for the transformation $\mathbf{x} \mapsto A\mathbf{x}$, when $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2}$.

17

$$A = \begin{bmatrix} -1 & 4 \\ -2 & 3 \end{bmatrix}, \mathbf{b}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \mathbf{b}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

ANS: Let $P = \begin{bmatrix} \vec{b}, \vec{b}_2 \end{bmatrix}$. From the above discussion, we know the \mathcal{B} -matrix for the transformation $\vec{x} \mapsto A \vec{x}$
is $C = P^{-1}AP$.

$$P^{-1} = \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix}^{-1} = \frac{1}{3+2} \begin{bmatrix} 1 & 1 \\ -2 & 3 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 1 & 1 \\ -2 & 3 \end{bmatrix}$$

Thus $C = P^{-1}AP$.

$$= \frac{1}{5} \begin{bmatrix} 1 & 1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} -1 & 4 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}$$
$$C = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}$$
 is the B matrix for the

Then $C = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}$ is the B transformation $\vec{x} \mapsto A\vec{x}$.

Exercise 5. Assume the mapping $T: \mathbb{P}_2 \to \mathbb{P}_2$ defined by $T(a_0 + a_1t + a_2t^2) = 6a_0 + (3a_0 - 5a_1)t + (3a_1 + 2a_2)t^2$ is linear. Find the matrix representation of T relative to the basis $\mathcal{B} = \{1, t, t^2\}$.

Solution. We first compute the image of the basis in \mathcal{B} under T:

$$T(1) = 6 + 3t, \quad T(t) = -5t + 3t^{2}, \text{ and } T(t^{2}) = 2t^{2}.$$
Thus $[T(1)]_{\mathcal{B}} = \begin{bmatrix} 6\\3\\0 \end{bmatrix}, [T(t)]_{\mathcal{B}} = \begin{bmatrix} 0\\-5\\3 \end{bmatrix} \text{ and } [T(t^{2})]_{\mathcal{B}} = \begin{bmatrix} 0\\0\\2 \end{bmatrix}$
Therefore, $[T]_{\mathcal{B}} = \begin{bmatrix} 6 & 0 & 0\\3 & -5 & 0\\0 & 3 & 2 \end{bmatrix}$